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General Comments

• RIA facility design has been developed over a 
number of years by a number of groups

• Technical Risks
• No “Show Stoppers” but significant challenges

• Significant efforts on the driver linac
• Optimization strategies & detailed 

considerations
• Relatively less activity on the target and 

experimental areas
• Recently these  arenas have seen dramatic 

increase in focus
• Significant challenges and issues recognized 
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MSU Design Approach

• Site will have appropriate space
• Layout optimization unconstrained by space
• Large range of possibilities for future 

capabilities 
• Design evaluations 

• Minimize risks to schedule & performance
• Enhance facility potential for implementation of 

improvements without significant interruptions 
for users 
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RIA at MSU
• Over 5000 acre campus – several potential sites within 5 minutes of classroom
• Next generation scientists & multi-discipline synergies

North
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MSU RIA Layout

• Driver linac straight (shown) or folded – decision 
based on optimization

• Future expansion paths for experimental areas
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Driver Linac Common Concepts

• Multiple charge state acceleration (>Xe)
• Two stripping stations (>Xe)
• Room temperature technology through RFQ
• Superconducting technology beyond RFQ
• Superconducting solenoid focusing in first two linac 

segments
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Driver Linac Concept Variations

• 10th sub-harmonic (80.5 MHz) accelerating lattice
• Reduction in microphonics – avoid VCX tuners

• Mechanical damper & modest rf (Legnaro)
• 6D acceptance found similar to 14th sub-

harmonic (57.5 MHz)
• Only 6 cavity types – prototyped by end of 2003

• Advantage taken of Legnaro & SNS experience
• Supports early infrastructure definition

• Details reported at RIA Driver Linac Workshop 
(May 2002)
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Driver Linac General

• Design driven by 400 MeV/nucleon uranium
• 28+ & 29+ U injected into SC linac at 292 keV/u
• Segment I

• Accelerated to ~12 MeV/u & stripped 
• Segment II

• 5 charge states (73±2) accelerated to ~90 MeV/u
• Segment III

• Stripped  and 3 charge states (88 ±1) accelerated 
to 400 MeV/u
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Driver Linac Sample Beam List

Ion A Z 
Segment I

Energy 
(MeV/u) 

Segment 
II Energy
(MeV/u)

Segment III 
Energy 
(MeV/u) 

H 1 1 11.8 239 1019 
3He 3 2 11.8 172 777 
D 2 1 11.8 136 622 
O 18 8 11.8 123 560 
Ar 40 18 11.8 124 566 
Kr 86 36 11.8 109 510 
Xe 136 54 11.8 101 470 
U 238 92 11.8 89 400 
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Driver Linac Front End 
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Low Energy Beam Transport (LEBT)
• Beam pre-bunched for RFQ
• Additional buncher system to put two-charge-state 

beams (>Xe) in every other RFQ bucket
• Similar to ANL design

Buncher Voltage (kV) Ion A Q Vp (kV) B1 (1st harmonic) B2 
Xe 136 19 & 20 -52.38 1.242 1.754
Au 197 23 & 24 0 2.134 2.135
U 238 28 & 29 +38.95 2.728 2.141

 

29+

28+
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RFQ
• Frequency 80.5 MHz – 10th sub-harmonic of 805 

MHz
• Input energy = 12 keV/u
• Output energy = 292 keV/u
• Transverse dynamics similar for two charge states
• Ratio longitudinal emittance / linac acceptance 

• Ratio within ~10% of 14th sub-harmonic case
Parameter Value 
Length 3.07 m 
Mean radius R0 6.5 mm 
Transverse electrode curvature ρ 0.8×R0 
Minimum aperture a 6.19 → 4.44 mm
Modulation factor m 1.1 → 1.92 
Synchronous phase Φs -25 ° → -20 ° 
Voltage 90 kV 
Number of cells 123 
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Medium Energy Beam Transport (MEBT)

• 6D match of RFQ beam to superconducting linac
• PARMELA simulations

MEBT exit
Longitudinal

RFQ exit
Longitudinal

RFQ exit
transverse

MEBT exit
transverse
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Superconducting Segments

• 6 cavity types
• If  reduce to 5 cavity types by removing βopt =0.83

• Fewer spares & NRE benefits
• Result is proton energies of ~740 MeV 

Cavity 
Type βopt f 

(MHz) 

Peak 
E field 

(MV/m)

T 
(K) 

Linac 
Segment

# Of 
Cryostats

λ/4 0.041 80.5 16.5 4.2 I 2 
λ/4 0.085 80.5 20 4.2 I 13 
λ/2 0.285 322 25 2 II 26 

Ellip. 0.49 805 32.5 2 III 17 
Ellip. 0.63 805 32.5 2 III 16 
Ellip. 0.83 805 32.5 2 III 8 
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Superconducting Structures - [1]

ßopt=0.041
80.5 MHz

Legnaro
MSU

ßopt=0.085
80.5 MHz

ßopt=0.285
322 MHz

MSU

ßopt=0.49
805 MHz

MSU/JLAB

ßopt=0.63
805 MHz

SNS

ßopt=0.83
805 MHz

SNS
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Superconducting Structures - [2]

• See details in Terry Grimm’s Talks (Wed.)
• All cavity types tested by end of year
• 2 types of λ/4 cavities

(β=0.041, 80.5 MHz) – (similar to Legnaro)
• (β=0.085, 80.5 MHz) – tested by end of year

• 1 type of λ/2 cavity
(β=0.285, 322 MHz) – demonstrated – exceeds specs

• 3 types of elliptical 6 – cells
(β=0.49, 805 MHz) – demonstrated – exceeds specs
(β=0.63, 805 MHz) – demonstrated – exceeds specs
(β=0.83, 805 MHz) – demonstrated – exceeds specs
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Transit Time Factors & Energy Gain

Stripping locations

U

H
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Segments I & II Cryostats 

• Isolated vacuum
• Superconducting solenoid focusing
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Segment III Cryostats

• Isolated Vacuum
• Two-cavity prototype – complete in ’03, tested in 

‘04
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Cryogenic Plant Optimization
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design goal

• Q vs. Ep as function of temperature
• Operate λ/2 at 2 K

• ~10% less wall plug power
• ~17% less capital cost

4.2 4.2 2 ellipticals 16.3 13.4 14.9 41
4.2 2 2 ellipticals 2.7 15.2 13.2 34

Cavity Operating 
Temperatures (K)

Cryogenic Plant
4.2 K 

Capacity 
(kW)

2 K 
Capacity 

(kW)

Wall 
Plug 

(MW)

Capital 
Cost 
(M$)λ/4 λ/2 Segment 3

3
1
8
1
2
0
2
-
0
0
3
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Driver Linac Stripping Chicanes
• High symmetry – good higher-order corrections
• Positioned to support longitudinal matching at 

frequency changes

X XY YZ Z
Entrance Exit

1st Stripping Chicane
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Driver Linac Dynamics
• 6D dynamic evaluations – no problems & 

reasonable tolerances – See Wednesday talk by Wu
• SRF cavities – σx,y = 1 mm, V= 0.5%, φ=0.5o

• Solenoids - σx,y = 0.25 & 0.5 mm (Seg. I & II)
• Quads - σx,y = 1 mm, σz= 5 mrad (Seg. III)
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Driver Linac Switch Yard
• Revised to accommodate target area developments 

& to increase flexibility
• 100% to any one, 50%/50% to any two
• 50%/25%/25% to any three
• 25%/25%/25%/25% to any four
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ISOL Target Area Concepts
• See Bollen talks on Wednesday
• 400 kW beam power – Many R&D Issues

• ~10x existing designs  - major technical challenge for ISOL targets
• Infrastructure proposed suitable for ultimate 400 kW

• Three (possibly staged) ISOL target stations proposed
• Redundancy & beam development & R&D to higher powers

• Goal to maximize usability of ISOL beams produced in any station

< 400 kW 
primary beam

target stations with
pre-separator and

focal-plane switchyard

beam transport 
matrix

high-resolution 
separators

to stopped 
beam area 

to post-
accelerator 

from gas 
stopping station 

 ECR 
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ISOL Target Station 

• 400 kW infrastructure & shielding so access to 
other stations possible when beam delivered to 
others – R&D Required

5 m
remote handling 
access room

target unitprimary beam

modular shielding

pre-separator
switchyard
vertical beam lines

beam dump

front end

service 
position

remote handling 
access room

static shielding
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Layout of ISOL Area
• Important to make design compatible with very different types of targets
• Mass separators with beam cooling may be better & cheaper – R&D 

Required
• Post accelerator ( 8 MeV/u for A up to 240, 20 MeV/u for A<60)

Gas 
stopping

ISOL target stations

Stopped 
beam 
area

ECR 

High resolution separators

Beam 
transport
matrix 

Post-accelerator
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Low-energy & Stopped Beam Experimental 
Area

• Compatible with ORNL 2003 workshop

Stopped beam Area

Low-energy Area
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Fragmentation Area Concepts

• See Wednesday Talks by:
• Morrissey, Sherrill, Ronningen, & Zeller

• Two fragmentation separation systems proposed
• High acceptance to helium gas stopping station
• High resolution to high energy area
• Both could feed to high energy experimental 

area
• Third channel provided for primary beam to future 

possibilities
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Fragmentation Production Area

• Targets – R&D challenge
• High power density - ~ 500 kW/cm3 (400 kW 

primary beam)
• Small spot size – reduce geometric aberrations
• ~20% of beam power lost in target

• Pre-separator concept
• Begin to isolate downstream system from very 

high radiation environment
• High performance & radiation resistant magnets 

required – R&D challenge
• Characterization of radiation fields – required to 

support R&D efforts
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Fragmentation Separation Area Layout
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Fragment Separators

• High acceptance design feeding helium gas stopping 
station
• 10 T-m, 12% momentum acceptance, 10 msr

• High resolution design feeding fast beam area
• 10 T-m, 6% momentum acceptance, 8 msr
• Similar to NSCL design

• Pre-separator segment
• Remove primary beam & most of unwanted 

fragments
• R&D Challenge

• Optical design with radiation resistant magnets 
and beam interception elements
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Gas Stopping  Station

• Layout 
• Provides beam from gas stopping to low-energy 

area
• Allows use of fragment separator to send beam 

to high-energy area
• Good R&D progress made with NSCL gas cell

• Shown ~50% incident ion implanted
• Shown range-compression technique workable

• Outstanding R&D questions remain
• What is system efficiency?
• What is rate limitation?
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High Energy Experimental Area

• See Tuesday talk by Thoennessen
• See Wednesday talk by Lynch
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Summary

• Fully general RIA facility accommodating baseline 
and future capabilities has been developed

• Driver linac with  beam transport
• Well detailed design
• SRF R&D remains

• Target and experimental areas
• General designs defined & issues identified
• Provides for large range of possibilities for 

future capabilities
• R&D priorities identified
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